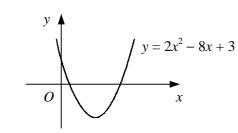
PMT

ALGEBRA

1 By completing the square, show that the roots of the equation $ax^2 + bx + c = 0$ are given by


$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,.$$

2 Use the quadratic formula to solve each equation, giving your answers as simply as possible in terms of surds where appropriate.

a $x^{2} + 4x + 1 = 0$ **b** $4 + 8t - t^{2} = 0$ **e** $6 + 18a + a^{2} = 0$ **f** m(m-5) = 5 **i** $5 - y - y^{2} = 0$ **j** $2x^{2} - 3x = 2$ **m** $0.1r^{2} + 1.4r = 0.9$ **n** $6u^{2} + 4u = 1$

c
$$y^2 - 20y + 91 = 0$$

d $r^2 + 2r - 7 = 0$
g $x^2 + 11x + 27 = 0$
h $2u^2 + 6u + 3 = 0$
k $3p^2 + 7p + 1 = 0$
l $t^2 - 14t = 14$
p $4x(x - 3) = 11 - 4x$

3

The diagram shows the curve with equation $y = 2x^2 - 8x + 3$. Find and simplify the exact coordinates of the points where the curve crosses the *x*-axis.

4 State the condition for which the roots of the equation $ax^2 + bx + c = 0$ are a real and distinct **b** real and equal **c** not real

5 Sketch the curve $y = ax^2 + bx + c$ and the x-axis in the cases where

a $a > 0$ and $b^2 - 4ac > 0$	b $a < 0$ and $b^2 - 4ac < 0$
c $a > 0$ and $b^2 - 4ac = 0$	d $a < 0$ and $b^2 - 4ac > 0$

- **6** By evaluating the discriminant, determine whether the roots of each equation are real and distinct, real and equal or not real.
 - **a** $x^{2} + 2x 7 = 0$ **b** $x^{2} + x + 3 = 0$ **c** $x^{2} - 4x + 5 = 0$ **d** $x^{2} - 6x + 3 = 0$ **e** $x^{2} + 14x + 49 = 0$ **f** $x^{2} - 9x + 17 = 0$ **g** $x^{2} + 3x = 11$ **h** $2 + 3x + 2x^{2} = 0$ **i** $5x^{2} + 8x + 3 = 0$ **j** $3x^{2} - 7x + 5 = 0$ **k** $9x^{2} - 12x + 4 = 0$ **l** $13x^{2} + 19x + 7 = 0$ **m** $4 - 11x + 8x^{2} = 0$ **n** $x^{2} + \frac{2}{3}x = \frac{1}{4}$ **o** $x^{2} - \frac{3}{4}x + \frac{1}{8} = 0$ **p** $\frac{2}{5}x^{2} + \frac{3}{5}x + \frac{1}{3} = 0$
- Find the value of the constant p such that the equation $x^2 + x + p = 0$ has equal roots.
- 8 Given that $q \neq 0$, find the value of the constant q such that the equation $x^2 + 2qx q = 0$ has a repeated root.
- 9 Given that the *x*-axis is a tangent to the curve with the equation

$$y = x^2 + rx - 2x + 4,$$

find the two possible values of the constant r.